
Comments? info@SCUTTLErobot.org

Copyright 2022 SCUTTLE Robotics LLC

Last revised: 2022.08.08

Comments? info@SCUTTLErobot.org 1

Software Architecture

Software best practices

Sensor Communication

Obstacle Avoidance

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Software Architecture

The SCUTTLE robot software has been programmed in Python3 on

an embedded Linux platform. Both Beaglebone Blue and Raspberry

Pi have been tested successfully. The software has been architected

to make a robust starting point for students to create their own

autonomous missions.

CONTENTS

LANGUAGE

FUTURE

OUTLOOK

This guide covers

• The parts of each software file

• How the programs interact with each other

• How the programs interact with hardware

• Sensor software vs actuator software

Next Steps: Robotic Operating System 2 (ROS2) is quickly

becoming a reliable, versatile software platform for mobile robots.

During 2022 the SCUTTLE team will release demos utilizing

simultaneous localization and mapping (SLAM), aim to create a new

ROS2 version of the software. Find a sneak peak of our python

library intended for using in ROS, called scuttlepy.

2

https://github.com/ansarid/scuttlepy

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

data

Software Architecture – Introduction

The blocks in yellow are sensors, and the items in orange are actuators or other outputs.

The level-2 blocks in teal are specific to the hardware platform (beagle, pi, etc) and

perform communication with the low level devices. The blocks of level2 and above are

non-hardware specific.

Each block aside from sensors and actuators represent an individual python program. The

purple text indicates what important information is passed between programs and the black

arrows indicate (for the most part) what direction the data is flowing. If a level 3 program

needs information from another, it must receive the information from the top-level program,

in order to maintain the structure of independence in program functions.

This software structure is preferred in order to perform subsystem testing. The data flowing

through the top level is minimal and can be replaced with artificial data in the even that a

sensor is unavailable.

Sensors

Actuators

programs

[var_A, var_B]

programs

3

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Color Key

Software Architecture - Overview

L1_motor.py
generate 4 signals to

output pins

L2_kinematics.py
compute chassis

movement

[pwmA, pwmB,
pwmC,pwmD]

Wheel Encoders Column

Motor
Driver

inputs 1,2

Motor
Driver

inputs 3,4

L2_speed_control.py
generate wheel duty cycle

commands

[duty_L,
duty_R]

[phiL,
phiR]

L1_encoder.py
get the information from

encoders

cpu
clock

Motor Driver Column

[x_dot,

theta_dot]

Left
Encoder

0x40

Right
encoder

0x41

Sensors

Level 2 Program
(logic-defining)

Level 1 Program
(hardware-specific)

Actuators

L3_drive_mt.py
multithreading driving

GamePad
controller

L1_gamepad.py
get the information from

gamepad

[nearest
obstacle]

L2_inverse_kinematics.p
y compute wheel vectors

[target_x_dot,
target_theta_dot]
+14 values

Game Controller Column

[target_phi_dot_L,

target_phi_dot_R]

LIDAR
TiM561

L1_lidar.py
get the information from

lidar

L2_obstacle.py
compute obstacles

[array of
distances &
angles]

LIDAR column

L1_text2speech.py
generate audio signals for

aux output

analog
audio

Audio
Driver

Audio Output Column

[text string]

[target_phi_dot_L,

target_phi_dot_R]

4

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Color Key

Software Architecture – Overview (continued)

ADC
voltage sensor

L1_adc.py
get adc data

L2_onboard.py
compute battery info

[adc

values]

Sensors column

[battery info] or

[temp, press] or

[mpu data]

MPU9250
motion sensor

BMP280
enviro sensor

L1_bmp.py
get bmp data

L1_mpu.py
get mpu data

USB
camera

L1_camera.py get the

image from camera

L2_track_target.py
compute steering

[target_x,

target_y,
target_radius]

Camera column

[target_x_dot,

target_theta_dot]
Sensors

Code Modules
(logic-defining)

code modules
(hardware-specific)

Actuators

L1_servo.py
send commands to servos

servo
command

Servo 1

Servo Column

Servo 8…

[mpu

values]

[bmp

values]

myLog.csv
data log

L2_log.py

Data logging column

[data to

be logged]
[array of
commands]

servo
command

to the L3
program

[strings]

5

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Libraries in use:

Python importing guidelines:

1. Each file should import the files below it in hierarchy, and not the files above it.

2. Each file may import non-scuttle libraries as needed (import NumPy, import time, etc.)

3. If the Level-1 file has imported an external library, it does not need to be imported by the Level-2 file

Libraries Utilized:

BeagleBone Blue Integration:

• RCPY for communicating with MPU9250 & commanding motor drivers

• Adafruit GPIO for I2C Communication

• BMP280 for communicating with the onboard bmp280 sensor.

Raspberry Pi integration:

• pysicktim for accessing LIDAR data

• gpiozero for controlling GPIO pins.

Common Libraries

• os for making shell commands via python code.

• time for keeping track of time

• threading for performing multithreading

• NumPy for performing math operations

• Fastlogging for generating log files

• pygame for accessing gamepad controller data

• cayenne.client for sending MQTT messages

• smbus2 for accessing i2c bus through python commands

6

https://github.com/mcdeoliveira/rcpy
https://github.com/adafruit/Adafruit_Python_GPIO
https://pypi.org/project/bmp280/
https://github.com/ansarid/pysicktim
https://gpiozero.readthedocs.io/en/stable/
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/threading.html
https://www.numpy.org/
https://pypi.org/project/fastlogging/
https://github.com/myDevicesIoT/Cayenne-MQTT-Python
https://pypi.org/project/smbus2/

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Libraries Matrix

Lib Beaglebone Blue Raspberry Pi
3B+ and 4

Jetson Nano
[Under development]

Time ✔ ✔ ✔

Threading ✔ ✔ ✔

numpy ✔ ✔ ✔

pygame ✔ ✔

fastlogging ✔ ✔ ✔

Cayenne.client ✔ ✔

PySICKtim ✔

GPIOZERO ✔

RCPY ✔

ADAFRUIT GPIO ✔

BMP280 ✔

7

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Outline of an L1 Program

Explanation of the purpose

Import internal programs (if

applicable)

Import external programs (aka

libraries). Take actions for

initializations of objects or global

variables.

Define functions. In some

cases, make functions that

combine other functions in

sequence.

Offer a simplified, minimal loop

for testing the code.

All files follow this outline

when possible. The level-1

programs are most suited to

this outline.

8

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Importing

Files & Libraries

Guidelines for Levels

Sensor
actual hardware

L1_program.py
get the data from sensor

L2_program.py
compute parameters from L1 data

[raw data
subset]

[data relevant

to the mission]

Only import L1 programs directly
below. Do not import L3 program. As

needed, import external libraries.

Do not import L2 or L3 programs. As
needed, import external libraries.

Testing

Code and Hardware

This file has a loop to test the whole
group (L1 + L2 + sensor).

This file has a loop to test sensor
function.

pass data to L3

[raw sensor
data]

9

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

When?

Do What?

Multi-threading Purpose
 Threading offers better control over timing of code execution.

 Each thread should contain actions that are related and that should be executed
within a specific time window.

 The user should avoid passing data between threads because it reduces robustness.
Instead, call the level 2 program as needed in each thread, even if you need to
communicate with the same device (ie, retrieve gamepad commands for driving and
retrieve in parallel for speaking commands)

Thread 1 (driving) Thread 2 (obstacle detect)

Drive the
robot

After
sampling

the
controller

AND
Log the

speed

After
sending

drive
command

Indicate
obstacles

using
speaker

when
obstacle is

detected by
lidar

Thread 3 (speaking)

10ms cylcle20ms cylcle

speak via
speaker

user presses
button

5ms cylcle

10

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Actuators

Software Architecture: Sensors vs Actuators

Actuator
actual hardware

L1_program.py
send commands to actuator

L2_program.py
compute commands for L1

program

[message for
actuator]

[message from

the mission]

pass command from L3

[message for

L1 program]

Sensors

Sensor
actual hardware

L1_program.py
get the data from sensor

L2_program.py
compute parameters from L1 data

[raw data
subset]

[data relevant

to the mission]

pass data to L3

[raw sensor
data]

Sensor and Actuators have the same architecture
except for data direction.

For sensors, the data is generated at the hardware
and sent UP.

For actuators, the data is generated at the top and
sent DOWN to hardware.

Some sensors and actuators have feedback and
preset commands, so data may flow both ways.

11

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Software Architecture: Modularity & Robustness

Sensor
actual hardware

L1_program.py
get the data from sensor

L2_program.py
compute parameters from L1 data

[raw data
subset]

[data relevant

to the mission]

Send and receives data in the format
that is “universal” or standardized.

If there is a hardware change, this
program does not need to change

If the driving strategy changes, this
program may change

The job of L1 program is to convert
the data into the desired format.

If there is a hardware change, only
these items need to be updated.

If the driving strategy changes, these
items do not change.

pass data to L3

[raw sensor
data]

12

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Level 1: logging

myErrorLog.csv
data log

Info retrieved
for
text2speech

functions:
logSpeeds()

logError()

logNewDataType()

myLogMsg.txt
data log

+ new log.csv
created data log

L1_log.py
compute parameters from L1 data

info for
nodeRed
charts

Rather than interacting with hardware, the L1_log
program interacts with other python files. It acts as a
sensor in that it retrieves recorded data and it acts
as an actuator in that it can receive data and
perform an action with it (store it in a file).

L1_log.py program was initially designated as level2,
but is being set as L1 going forward (2020.11)

13

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Motor Driver Column

Function Explained: Duty Compression

variables & their definitions:
slope1 = input by user
y_inflection = input by user
x_inflection = slope1 / inflection_y
slope2 = (1-inflection_y)/(1-inflection_x)
x_trim = x – x_inflection
y = inflection_y + x_trim*slope2

Duty compression, or motor signal scaling, helps reduce the dead band
where the wheels don’t turn. Sometimes, small commands of duty cycle
give insufficient voltage to overcome friction.

Based on an earlier experiment, in forwards and backwards directions, duty
cycles below 22% may result in some noise but no movement.

This deadband region can be difficult for a driver to handle and even more
difficult for a control system. We could chop this section out entirely to
solve the static condition, but in transient conditions we would exacerbate
the nonlinearity that takes place crossing the deadband.

The Compression function “compresses” the deadband and spreads the
range where the duty cycle maps to a nonzero wheelspeed.

To define the function, we basically just manipulate the initial slope, and the
inflection point for the output, y.

compress()[duty] [compressed
duty]

14

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Color Key

Multithreading example

L1_motors.py
generate 4 signals to

output pins

L2_kinematics.py
compute chassis

movement

[pwmA, pwmB,
pwmC,pwmD]

Wheel Encoders Column

Motor
Driver

inputs 1,2

Motor
Driver

inputs 3,4

L2_speed_control.py
generate wheel duty cycle

commands

[duty_L,
duty_R]

[phiL,
phiR]

L1_encoder.py
get the information from

encoders

cpu
clock

Motor Driver Column

[x_dot,

theta_dot]

Left
Encoder

0x40

Right
encoder

0x41

Sensors

Level 2 Program
(logic-defining)

Level 1 Program
(hardware-specific)

Actuators

L3_drive_mt.py
multithreading driving

GamePad
controller

L1_gamepad.py
get the information from

gamepad

L2_inverse_kinematics.p
y compute wheel vectors

[target_x_dot,
target_theta_dot]
+14 values

Game Controller Column

[target_phi_dot_L,

target_phi_dot_R]

L1_text2speech.py
generate audio signals for

aux output

analog
audio

Audio
Driver

Audio Output Column

[text string]

[target_phi_dot_L,

target_phi_dot_R]

mpu sensor

compass driver in
RCPY Lib

L2_heading.py
compute steering

[tcompass_x,

tcompass_y]

Compass column

[heading
(degrees)]

L3_tellHeading.py
declare robot heading on

speaker

15

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Color Key

Color Tracking Example

L2_track_target.py
Finds color target in range

Camera Column

[image]

L1_camera.py
Get image from USB

camera

Sensors

Level 2 Program
(logic-defining)

Level 1 Program
(hardware-specific)

Actuators

L3_follow.py
Object Following

L1_gamepad.py
Not used

[target
speeds]

L2_inverse_kinematics.py
Compute wheel vectors

Kinematics Column

L1_motor.py
Generate signals to

output pins

L2_speed_control.py
Converts speeds into duty

cycles

[duty cycles]

Motor Driver column

[target_phi_dot_L,

target_phi_dot_R]

Wide-Angle
Camera

[pwmA, pwmB,
pwmC,pwmD]

Motor
Driver

inputs 1,2

Motor
Driver

inputs 3,4

[target offset
from center]

[target offset

[-1,1]]

16

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Absolute Orientation
 SCUTTLE has a compass for orientation

 The compass is nothing but a 3-axis magnetometer

 Encoders can provide relative orientation

 Compass is required for global orientation

 The compass is embedded in the IMU (MPU-9250)

 It has 3 sensors oriented in the indicated directions

 L1_mpu.py accesses the magnetometer

 Each magnetometer requires calibration

global
coordinate
frame

x’

Y’

Remember: Theta is defined as scuttle’s
chassis x-vector minus the global x-vector

c

x this theta
is positive

17

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Magnetometer Behavior
 An axis is at its MAXIMUM when it is aligned NORTH

 The axis is at its MINIMUM when it is opposing NORTH

 After calibration, we can achieve the behavior below

Values Desired by Direction
Using X axis for example:

xc = 0 xc = 1 xc = 0 xc = -1
𝑥scaled =

2(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
− (1)

2) Using the following equation, re-scale each axis

1) Discover the maximum and minimum values by rotating sensor
in a full circle.

Permanent magnets influence the sensor, so calibration
must be done on the robot, in position near the motors.

Before Calibration Min (microtesla) max (microtesla)

X -15 38

Y -22 20

AfterCalibration Min (ratio to max) max (ratio to max)

X -1 1

Y -1 1

(magnetic
north)

18

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Determining Absolute Orientation
 X and Y axes are sufficient information to give heading.

 Z axis returns zero if scuttle sits flat

 Theta is defined as rotation of SCUTTLE from the global coordinate frame, or y-prime

 positive theta means SCUTTLE is turned left from north

 We can define NORTH as the y-axis of the global coordinate frame

Theta is positive when scuttle points west

Theta is negative when scuttle points east

Use arctan2(y, x) to return a heading
arctan2 is the "element-wise arc tangent of y/x

choosing the quadrant correctly."

ATAN2(0.91, 0.42) returns 25 degrees

Example:

y = 0.91
x = 0.42

y-prime

y is pointed strongly north

X is pointed weakly north

both axes return positive values

19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Speeds Tuning

 Vmax = 0.4m/s (measured by wheel speed)

v = *r

 max, motor pulley = 19.5 rad/s

 max, wheel= 9.75 rad/s

 With 1 wheel stopped and 1 wheel moving:

ሶ
𝑣

𝐿
(where L = wheelbase)

ሶ
max, chassis= 1.98 rad/s (0.32 turns/sec)

These are general performance characteristics

you can expect when using the standard

SCUTTLE hardware:

Nominal conditions:

Battery: 11.5 volts OC

Motors: equipped with standard 200 rpm gearbox

Wheels: 83mm diameter urethane wheels

Pulleys: motor = 15 teeth, wheel = 30 teeth

Wheelbase: 405mm

20

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Speed Control

This slide is dedicated to describing the wheel

speed measurements and calculation of

variables for speed control.

Nominal conditions:

Battery: 11.5 volts, open circuit

Motors: equipped with standard 200 rpm gearbox

Wheels: 83mm diameter urethane wheels

Pulleys: motor = 15 teeth, wheel = 30 teeth

Wheelbase: 405mm

Closed-loop frequency: 10hz minimum

Update Shaft positions
(take reading)

•Measure position

•Capture time

•10hz is sufficient

Get Wheel Increments

•Just math

Update Phis

•Integrate the wheel positions

Update PhiDots

•Take derivatives

•Update latest wheelspeeds

Chassis displacement

•Compute the displacement in
theta and x

Chassis speeds

•Take derivative of last
movements w.r.t. change in
time since last sample.

21

The variables used to command (closed or open loop) movement on the

SCUTTLE are x_dot and theta_dot. Send these variables by any means to the

controller (such as Pi) and then controller can produce signals to motor driver.

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

SCUTTLE Driving
• The left joystick operates the

robot wheels

• The forward/backward axis will
request a speed
– (A.K.A movement in x)

• The left/right axis will request
an angular velocity
– (A.K.A movement in theta)

requests ሶ𝑥

requests ሶ

axis 1+

axis 3+

axis 0+

B2

B1

B0
B3

axis 2+

B4 B5

B10

B11

B8 B9

select proper
mode

Gamepad Controls Mapping

Trigger: B6 Trigger: B7

Move Theta_do
t

(rad/s)

X_dot
(m/s)

Phi_d
ot

max 1.99 0.4 9.75

Given a measured max forward velocity of

0.4m/s, the other maximums are calculated.

22

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

SCUTTLE Movement Example

right turn on
joystick

outputs positive
value on axis_1

interpret as
negative theta

movement

performs
POSTIVE phi_dot_l and
NEGATIVE phi_dot_R

USER
SAYS

GAMEPAD
SAYS

KINEMATICS
SAYS

KINEMATICS
SAYS

MOTOR
PROGRAM

SAYS

performs
POSTIVE differential on

NEGATIVE phi_dot_R

Move Theta_dot X_dot Duty_r Duty_l

Fwd 0 1 1 1

Rev 0 -1 -1 -1

right -1 0 -1 1

left +1 0 1 -1

23

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

SCUTTLE Movement Options

[-1,1]

To Generate an x_dot target

gamepad output

ball tracking output

range of commands

(percent of max speed)

telepresence command

[-1,1]

[-1,1]

range of commands

(meters/second)

Kinematics
function

[-0.4,0.4] Kinematics
function

[-9.75,]

(radians/sec)

24

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

SCUTTLE Color Tracking

Wide-Angle
Camera

150˚

Center
Threshold

Radius=15 pixels

Radius=20 pixels

Wide-Angle
Camera

1) SCUTTLE turns until the target is detected

within the threshold

2) After the target is in the center range, SCUTTLE drives

forward or backwards to reach a target radius, in pixels.

Drive
forward
@ 60% FS

Drive
backward
@ 50% FS

25

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Color Tracking: Radius

To control x_dot motion, we evaluate the size of

the ball in the camera view.

If the ball radius is too large, we make a Reverse

command.

If the ball raidus is too small, we make a Forward

command.

Target radius, r1: 28

radius, tolerance: +/-3

26

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

SCUTTLE Color Tracking

x_offset = 0

Radius=
15 pixels

Camera Field

of View

x_offset = -1.0

(x = 240)

x_offset = 1.0

(x = 0)

x = 180 pixels

x_offset = -50

Full width = 240 pixels

The requested angular speed for SCUTTLE is

the x_offset (as a fraction of max) times the

maximum turning velocity possible.

In this case, the requested turning velocity is

negative 0.5 * max speed (2 radians/second).

This gives a 1 radian/second right hand turn.

centerBand = +/- 0.18

3) The intensity of the turning request is computed,

proportional to the offset of the detected object from

center.

27

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

LIDAR Concept of Operation

ANATOMY

Lidar systems have a rotating sensor collecting multiple measurements
to measure in a 2D plane. (Some have 3D, by other methods).

METHOD

Lidar emits a beam of light and receives the reflection. distance is
based on Time of Flight concept.

POWER

TiM561 uses about 2.1 watts during operation, mainly due to driving
the motor and driving a strong IR emitter diode.

FAILURE MODES

Just like light, a Lidar beam can be absorbed by very dark objects
and can be mis-directed by highly reflective objects which are non-
perpendicular to the beam.

DATA QUALITY

The lidar has variable resolution in a sense! 0.33 degrees offers 5mm
point spacing at a 1m distance, and at 10 meters, 50mm point spacing.

APPROPRIATE USE

To be successful in using the device, you need to see the datasheet
to understand the parameters of your device.

d

maximum range

Lidar Device

28

https://cdn.sick.com/media/docs/3/43/143/Operating_instructions_TiM55x_TiM56x_TiM57x_TiM58x_2D_LIDAR_SENSORS_en_IM0053143.PDF

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

LIDAR – measuring a point

• P1 is the location of the lidar.

• The points will be initially measured from
lidar and returned as pairs given by:

• [d (mm), (degrees)]

• Python’s numpy library performs math in
radians. It is easy to convert back and forth
but you must be aware of your units.

P2

d

dx

dy

LIDAR
location

P1

P0
Center of
Wheelbase

29

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Software For LIDAR

Sensors

Level 2 Program
(logic-defining)

Color Key

Level 1 Program
(hardware-specific)

Actuators

Lab8Template.py
Get the P2 vector & send to

nodeRed

[nearest
obstacle vector]

LIDAR
TiM561

L1_lidar.py
get the information from

lidar

L2_vector.py
compute obstacles

[array of distances
& angles] (54x2)

LIDAR column

Key Points:

Software is using the numPy library to handle vectors and
matrices. numPy computation is faster than raw python and
requires proper syntax.

Lidar scan frequency: 15hz, so you cannot get new
measurements faster than 66ms.

L1_lidar.py returns 54 measurements by default and can
return over 800 single points if desired, for more resolution.

TiM561 LIDAR returns distances in meters. Distances under
16mm are returned as error codes in case of poor reflection or
other problem for a given measurement.

L2_vector.py can manipulate measurements, with functions
such as returning the nearest point, combining cartesian vectors,
and converting vectors from polar to Cartesian coordinates.

30

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Global Location of Obstacle
Determine the global location of an obstacle:

You must add vector r0 and vector r02

First, your vector r02 must be generated using
knowledge of the location of the LIDAR on the
robot.

global
coordinate
frame

x’

y’

r0

P0

Where is the obstacle
located in the room?r0-2

P2

P1

vector r02
is not given
automatically.

31

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Global Location of Obstacle
Determine the global location of an obstacle:

Lidar is located at positive 254mm in the x-direction

on the robot.

The lidar beam is 166 mm above the floor.

32

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Obstacle Avoidance by LIDAR

One method to avoid obstacles is to
generate an imaginary spring which
pushes on your robot and depends on
the nearest obstacle.

Dy is the y-component of distance d

Dx is the x-component of distance d

P1

P2

d

dx

dy

33

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Obstacle Avoidance by LIDAR

Strategy:
The obstacle avoidance feature will try to detect
the nearest objects to the robot and apply an
“invisible force” to prevent the robot from crashing.
The force is intended to act like a spring which is
anchored to the nearest obstacle and pushes the
robot at a point on the body, referred to as P1.

P1

P2

d

The obstacle avoidance only deals with the body-fixed frame

• Define P1 as a point of interest on our robot.

• P2 is assigned to the nearest point detected by the
LIDAR scan.

• d is the distance between point 1 and point 2

• We would like to handle all of these variables in:
– body-fixed frame

– Cartesian coordinates P0

34

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Obstacle Avoidance – influence on

velocity (translational and angular)

• If P2 is detected straight ahead, the force influences velocity

• If P2 is detected at the side, the force influences steering

• If P2 is detected at an angle, the force will influence both

P2

LIDAR
location

P2

P2

35

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Obstacle Avoidance – Variable Force

• If d is large, the force is low

• If d is small, the force is high

• If d is larger than dmax, the force is absent

P2

large

force

small

force

P1

36

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Quick Dive – Barometric Pressure

COLLEGE STATION 4-DAY CHANGE

delta in pressure is 30.09-29.58 “Hg ➔ 0.51” Hg

delta pressure = 1.73kPa

Historic weather at timeanddate.com

STANDARD PRESSURE CALCULATIONS

sea level std pressure: 101.3kPa

pressure at 1000ft: 97.7kPa

delta pressure = 3.6kPa

elevation change represented by 1kPa = 278ft

What the Barometric pressure will tell you:

1.73kPa change in pressure will represent
480ft altitude change.

37

https://www.timeanddate.com/weather/usa/bryan-college-station/historic

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Driving FORWARD in Full Detail:

PWM chA chB chA chB

Pin on Pi 11 12 15 16

Duty 100 0 100 0

Terminals in1 in2 in3 in4

Incoming (v) 3.3 0 3.3 0

terminal out1 out2 out3 out4

outgoing (v) 12 0 12 0

LEFT HAND RIGHT HAND

outgoing (v) @

motor terminals

+ - + -

12 0 0 12

(facing shaft) counter-clockwise clockwise
Motor

+ -

Motor Driver

Controller Board

LEFT HAND RIGHT HAND

Direction
(driver’s perspective)

FWD FWD

Phi Dot + +
wheel

Where lies the difference

between left and right?

A: Where we plug in the

terminals.

38

© 2022 SCUTTLE Robotics LLC - info@SCUTTLErobot.org

Further Reading

 https://en.wikipedia.org/wiki/Holonomic_(robotics)

 Connector types

 http://dangerousprototypes.com/blog/2017/06/22/dirty-cables-
whats-in-that-pile/

39

https://en.wikipedia.org/wiki/Holonomic_(robotics)
http://dangerousprototypes.com/blog/2017/06/22/dirty-cables-whats-in-that-pile/

